An Optimization Algorithm Based on Binary Difference and Gravitational Evolution

نویسندگان

  • Junli Li
  • Yang Lou
  • Yuhui Shi
چکیده

Universal gravitation is a natural phenomenon. Inspired by Newton's universal gravitation model and based on binary differences strategy, we propose an algorithm for global optimization problems, which is called the binary difference gravitational evolution (BDGE) algorithm. BDGE is a population-based algorithm, and the population is composed of particles. Each particle is treated as a virtual object with two attributes of position and quality. Some of the best objects in the population compose the reference-group and the rest objects compose the floating-group. The BDGE algorithm could find the global optimum solutions through two critical operations: the self-update of reference-group and the interactive-update process between the reference-group and floating-group utilizing the gravitational evolution method. The parameters of BDGE are set by a trial-and-error process and the BDGE is proved that it can converge to the global optimal solution with probability 1. Benchmark functions are used to evaluate the performance of BDGE and to compare it with classic Differential Evolution. The simulation results illustrate the encouraging performance of the BDGE algorithm with regards to computing speed and accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the Accuracy of Black Hole Algorithms and Gravitational Research and the Hybrid Method in Portfolio Optimization

The main purpose of this research is portfolio optimization in Tehran securities exchange using the black hole algorithm and the Gravitational Research algorithm. We also propose an algorithm named Hybrid Algorithm which combines the two algorithms above to cover the weaknesses of these two algorithms. Finally we compare the results with the Markowitz model and choose the optimal algorithm.<br ...

متن کامل

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

On the Convergence Analysis of Gravitational Search Algorithm

Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...

متن کامل

On the Convergence Analysis of Gravitational Search Algorithm

Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...

متن کامل

FUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING

The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Computational Intelligence Systems

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012